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ON THE INTEGRAL CHARACTERIZATION OF PRINCIPAL

SOLUTIONS FOR HALF-LINEAR ODE

MARIELLA CECCHI, ZUZANA DOŠLÁ∗, ONDŘEJ DOŠLÝ, AND MAURO MARINI

Abstract. We discuss a new integral characterization of principal solutions for half-
linear differential equations, introduced in the recent paper of S. Fǐsnarová and R. Mařik,
Nonlinear Anal. 74 (2011), 6427–6433. We study this characterization in the framework of
the existing results and we show when this new integral characterization with a parameter α

is equivalent with two extremal cases of the integral characterization used in the literature.
We illustrate our results on the Euler and Riemann-Weber differential equations.

1. Introduction

Consider the half-linear differential equation

(1) (r(t)Φ(x′))′ + c(t)Φ(x) = 0, Φ(x) := |x|p−1 sgn x,

where p > 1, r, c are continuous functions on [t0,∞) and r(t) > 0. Denote by q the conjugate
number to p, i.e. q = p/(p − 1) and set

Jr =

∫
∞ dt

rq−1(t)
, Jc =

∫
∞

|c(t)| dt.

It is well-known, see, e.g., [9, Theorem 1.2.3], that if c is positive and both integrals Jr

and Jc are divergent, then (1) is oscillatory. Throughout the paper we suppose that (1) is
nonoscillatory, that is, all its solutions are either positive or negative for large t. Since the
solution space of (1) is homogeneous, we consider its positive solutions only.

Some recent trends in the qualitative theory of ODE’s consist in the extension of proper-
ties of linear second order Sturm-Liouville equations, see, e.g., [9]. One of them is related to
the notion of principal solution of (1). More precisely, when (1) is nonoscillatory, following
[13, 16], a nontrivial solution h of (1) is called a principal solution if for every nontrivial
solution x of (1) such that x 6= λh, λ ∈ R, we have

(2)
h′(t)

h(t)
<

x′(t)

x(t)
for large t.

As in the linear case, a principal solution h exists and it is unique up to a nonzero constant
multiplicative factor. For this reason, in the following we will denote it by the principal
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solution. Any nontrivial solution x 6= λh is called a nonprincipal solution. The problem of
an integral characterization of principal solutions of (1), similar to that in the linear case,
was initiated in 1988 when Mirzov’s paper [16] was published, see also [7, 9] for more details.
For instance, in [8], see also [7, Proposition 2], the following integral characterization of the
principal solution has been suggested as an extension of that given in the linear case, see
[14, Chap. XI].

Theorem A. Let (1) be nonoscillatory and h be its positive solution satisfying h′(t) 6= 0
for large t. Then:

(i) Let p ∈ (1, 2]. If

(3) Q :=

∫
∞ dt

r(t)h2(t)|h′(t)|p−2
= ∞.

holds, then h is the principal solution of (1).
(ii) Let p ≥ 2. If h is the principal solution of (1), then Q = ∞.

(iii) Suppose that p ≥ 2, Jr = ∞, the function γ(t) :=
∫
∞

t
c(s) ds exists, and γ(t) ≥ 0,

but γ(t) 6≡ 0 for large t. Then h is the principal solution of (1) if and only if Q = ∞.

Note that Theorem A-(iii) was stated in [8] without the assumption p ≥ 2. When c(t) > 0,
the implication

(4) h is the principal solution =⇒ Q = ∞
may fail to hold for p ∈ (1, 2) as Example 2 below shows, see also an example in [7].

When c is negative for large t, in [1, Theorem 3.2] it is shown that a solution h of (1) is
the principal solution if and only if

(5)

∫
∞ dt

rq−1(t)h2(t)
= ∞.

Later on, in [3, Theorem 7], it is proved that (5) is necessary and sufficient for h to be
the principal solution of (1) when Jr < ∞ and Jc < ∞, independently of the sign of c. As
it follows from the proof of [3, Theorem 7], when Jr < ∞ and Jc < ∞, condition (5) is
equivalent with

(6) N :=

∫
∞ dt

rq−1(t)hq(t)
= ∞.

Finally, other contributions to the problem of integral characterizations of principal solu-
tions can be found in [2, 4, 7, 16]. Observe that in these papers, under some additional
conditions, either sufficient conditions or necessary conditions are presented.

As a reaction on the fact that the implication (4) does not generally hold when c is
eventually positive and p ∈ (1, 2), the following alternative integral characterization has
been proposed recently in [11, Theorem 4.1].

Theorem B. Let (1) be nonoscillatory and h be its positive solution satisfying h′(t) 6= 0
for large t.
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(i) Let p ∈ (1, 2]. If

(7) Q[α] :=

∫
∞ dt

rα−1(t)hα(t)|h′(t)|(p−1)(α−q)
= ∞

holds for some α ∈ [2, q], then h is the principal solution.

(ii) Let p ≥ 2. If h is the principal solution, then (7) holds for every α ∈ [q, 2].

For the extremal cases of the parameter α, namely for α = 2 and α = q, we have

Q[2] = Q and Q[q] = N,

where Q is given by (3) and N by (6). Hence, the integral characterization Q[α] creates,
roughly speaking, a bridge between the characterizations Q and N . Moreover, the role of
the parameter α in Theorem B suggests that the situation is different for p ≤ 2 (in which
Q[α] may diverge for some α) and p ≥ 2 (in which Q[α] may diverge for every α).

Nevertheless, when the function c changes its sign, (1) can have positive solutions with
changing-sign derivatives, as the following example illustrates, and this fact makes Theorem
B inapplicable.

Example 1. Consider the equation

(8) ((x′)3)′ +
3 sin2 t cos t

(cos t − 2)3
x3 = 0,

Since x(t) = 2 − cos t is a solution of (8) and x′ does not have a fixed sign, Theorem B
cannot be used.

The main aim here is to show that, when c(t) > 0 for large t, the new characterization
Q[α] introduced in [11] is equivalent with two extremal cases, that is the integrals Q or N .
As a consequence, we will obtain that the opposite implication in the claim (ii) of Theorem
B is valid under an additional condition. The obtained results are illustrated by two critical
cases, namely the half-linear Euler and Riemann-Weber differential equations. Finally, an
application of the obtained results to the so-called reciprocal equation completes the paper.

2. Main results

Here we study the integral characterizations Q, N and Q[α] of principal solutions defined
by (3), (6) and (7), respectively.

When p > 2, Jr = ∞, Jc < ∞ and c(t) > 0 for large t, in view of Theorem A-(iii), the
integral Q gives a necessary and sufficient condition for h to be a principal solution of (1).
For this reason, throughout the paper we assume

(H1) 1 < p < 2, c(t) > 0 for large t, Jr = ∞, Jc < ∞.

In view of (H1) and Theorem A, the problem of integral characterization of principal
solutions of (1) reduces to the problem whether at least one of the integrals Q, N and Q[α]

diverges when h is the principal solution of (1).
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Let h be a solution of (1) and denote by h[1] its quasi-derivative, i.e. h[1](t) = r(t)Φ(h′(t)).
Consider the function

Gh(t) = h(t)h[1](t).

Since Jr = ∞, any eventually positive solution h of (1) satisfies h′(t) > 0 for large t. Indeed
h[1] is decreasing for large t, say t ≥ T ; if there exists t1 > T such that h[1](t1) < 0, we
obtain h[1](t) < h[1](t1) < 0 for t ≥ t1, or

h(t) < h[1](t1)

∫ t

t1

1

rq−1(s)
ds,

which contradicts the positiveness of h. Hence, also the function Gh is positive for large t.
The role of the function Gh is given by the following result.

Lemma 1. [4, Lemma 1] Assume that Jr = ∞, c(t) > 0 for large t and (1) is nonoscilla-

tory. If x is a nonprincipal solution of (1), then

lim sup
t→∞

Gx(t) = ∞.

Our next lemma shows how the integral characterizations Q, N and Q[α] can be formu-
lated in terms of the function G.

Lemma 2. Let (1) be nonoscillatory and h be its positive solution satisfying h′(t) 6= 0 for

large t. Then the following identities hold:

Q[α] =

∫
∞ h′(t)

h(t)
(
Gh(t)

)α−1 dt,

Q =

∫
∞ h′(t)

h(t)Gh(t)
dt, N =

∫
∞ h′(t)

h(t)
(
Gh(t)

)q−1 dt.

Proof. The assertion follows by a direct calculation. �

Hence, if h is a nonoscillatory solution of (1) such that limt→∞ Gh(t) = c, where c > 0,
then integrals Q, N and Q[α] have the same behavior, i.e. either all are divergent or all
are convergent. In the remaining cases when limt→∞ Gh(t) is zero or infinity, the following
inequalities hold.

Theorem 1. Assume (H1). Let (1) be nonoscillatory and h be its solution.

(i) If limt→∞ Gh(t) = 0, then for every α ∈ [2, q] we have

N ≥ Q[α] ≥ Q.

(ii) If limt→∞ Gh(t) = ∞, then for every α ∈ [2, q] we have

(9) N ≤ Q[α] ≤ Q.
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Proof. Claim (i). Since for every α ∈ [2, q] it holds 1 ≤ α − 1 ≤ q − 1, we have for large t

1

Gh(t)
≤

(
1

Gh(t)

)α−1

≤
(

1

Gh(t)

)q−1

and from Lemma 2 the assertion follows.
Claim (ii) can be proved using a similar argument. �

A partial answer to the question when the implication (4) holds is given by the following
theorem.

Theorem 2. Assume (H1). Let (1) be nonoscillatory and h be its solution.

(i) If h is unbounded and

(10) lim sup
t→∞

Gh(t) < ∞,

then h is the principal solution and Q[α] = ∞ for every α ∈ [2, q]; in particular

Q = ∞ and N = ∞.

(ii) If h is bounded, then h is the principal solution and N = ∞. Moreover, limt→∞ Gh(t) =
0 and

(11)

∫
∞ 1

rq−1(t)

(∫
∞

t

c(s) ds
)q−1

dt < ∞.

(iii) If h is bounded and, in addition,

(12)

∫
∞

c(t)
(∫ t ds

rq−1(s)

)p−1

dt = ∞,

then Q[α] = ∞ for every α ∈ [2, q]; in particular Q = ∞.

To prove this theorem, the following lemma will be needed.

Lemma 3. [5, Lemma 1] Let a, b be continuous positive functions on [T,∞),
∫

∞

T
b(t) dt <

∞, and λ, µ be real positive constants. If µ > λ and
∫

∞

T

b(t)
(∫ t

T

a(s) ds
)λ

dt = ∞,

then ∫
∞

T

a(t)
(∫

∞

t

b(s) ds
)1/µ

dt = ∞.

Proof of Theorem 2. Claim (i). By [4, Lemma 1], h is the principal solution. The second
conclusion follows immediately from Lemma 2.

Claim (ii). By [4, Corollary 1], h is the principal solution. Since h is eventually increasing
and Jr = ∞, from (6) we get N = ∞. Since h is bounded and h[1] is eventually positive
decreasing, we have limt→∞ h[1](t) = 0. Indeed, if limt→∞ h[1](t) = d > 0, then h[1](t) > d
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for large t and integrating this inequality, we get a contradiction with the boundedness of
h. Finally, the statement (11) follows from [15, Theorem 4.2].

Claim (iii). Assume (12). We have for large t

Φ(h′(t)) =
1

r(t)

∫
∞

t

c(s)Φ(h(s))ds

or

(h′(t))
2−p

=

(
1

r(t)

∫
∞

t

c(s)Φ(h(s))ds

)(2−p)/(p−1)

.

Since h is eventually increasing, there exists k1 > 0 such that we have for large t

(h′(t))2−p ≥ k1

(
1

r(t)

∫
∞

t

c(s)ds

)(2−p)/(p−1)

or, because q − 1 = (p − 1)−1,

(13)
(h′(t))2−p

r(t)
≥ k1

(
1

r(t)

)q−1 (∫
∞

t

c(s)ds

)(2−p)/(p−1)

.

Set µ = (p− 1)/(2− p) and λ = p− 1. Since 1 < p < 2, we get µ > λ. Thus from (12) and
Lemma 3 with

a(t) = r1−q(t), b(t) = c(t),

we obtain ∫
∞

0

1

rq−1(t)

(∫
∞

t

c(s) ds

)(2−p)/(p−1)

dt = ∞.

Thus from here and (13) we get
∫

∞

T

dt

r(t) (h′(t))p−2 =

∫
∞

T

(h′(t))2−p

r(t)
dt = ∞.

Since h is increasing and bounded, we have Q = ∞. Finally, since limt→∞ Gh(t) = 0, from
Theorem 1 we obtain Q[α] = ∞ for every α ∈ [2, q]. �

Remark 1. Theorem 2 assumes boundedness of solutions of (1). When c is eventually
positive, Ir = ∞ and Ic < ∞, a necessary and sufficient condition for (1) to have bounded
(principal) solutions is well-known, see, e.g. [6, Theorem 4-i1)], and reads as follows: Assume

(1) nonoscillatory, c(t) > 0 for large t, Jr = ∞ and Jc < ∞. Then (1) has bounded

solutions if and only if (11) holds.

When (H1) holds, we get the following improvement of Theorem B.

Corollary 1. Assume (H1) and (11). Then a solution h of (1) is the principal solution if

and only if Q[α] = ∞ for some α ∈ [2, q].
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Proof. Since (11) holds, equation (1) has a bounded nonoscillatory solution, see [15, The-
orem 4.1]. Now the assertion follows from Theorem 2-(ii) and Theorem B. �

The following example is taken from [2, Corrigendum] and shows that the implication
(4) may fail to hold not only for Q but also for Q[α] with α ∈ [2, q).

Example 2. Consider the equation

(14) (Φ(x′))′ + e−tΦ(x) = 0

with 1 < p < 2. This equation is nonoscillatory and has both bounded and unbounded
solutions, as it follows, for instance, from [15, Theorems 4.1,4.2]. If h is the principal solution
of (14), in view of [6, Theorem 2-(i1)], h is bounded and h′ is eventually positive and satisfies
limt→∞ h′(t) = 0. Integrating (14) for large t we have

Φ(h′(t)) =

∫
∞

t

e−sΦ(h(s))ds.

Thus, in virtue of the boundedness of h, there exist two positive constants k1 < k2 such
that for large t

k1e
−t/(p−1) < h′(t) < k2e

−t/(p−1).

Hence, we have as t → ∞
Q ∼

∫
∞

(h′(t))
2−p

dt < ∞.

Notice that the same happens for Q[α] with α ∈ [2, q), since a standard calculation gives as
t → ∞

h′(t)

h(t)
(
Gh(t)

)α−1 ∼ e−(q−α)t .

Thus, from Lemma 2 we get

Q[α] < ∞ for every α ∈ [2, q).

On the other hand, N = Q[q] = ∞. This fact also illustrates how, in general, in Corollary
1 the stronger statement “Q[α] = ∞ for every α ∈ [2, q]” can fail.

Remark 2. Let h be a solution of (1). When limt→∞ Gh(t) = 0, in view of Theorem 1 we
have

(15) Q = ∞ =⇒ N = ∞ and Q[α] = ∞ for every α ∈ [2, q].

Observe that limt→∞ Gh(t) = 0 may occur not only when the principal solution h is
bounded, but also when every solution of (1) is unbounded and the Euler half-linear equa-
tion discussed in the next section is a typical example.

We will show also that the principal solution can satisfy limt→∞ Gh(t) = ∞ and the
implication (15) can fail. A typical example of this fact is the Riemann-Weber equation
which will also be studied in the following section.
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3. Examples

The following example illustrates Theorem 2.

Example 3. Consider the half-linear Euler differential equation

(16)
(
Φ(x′)

)
′

+
γ

tp
Φ(x) = 0 (γ > 0).

First, let γ = γp where γp is the critical oscillation constant γp = ((p − 1)/p)p. In this
case h(t) = t(p−1)/p is a solution of (16) and any linearly independent solution x behaves

asymptotically (up to a multiplicative factor) as the function t(p−1)/p log2/p t, see [9, Section
1.4.2]. Moreover,

th′(t)

h(t)
=

p − 1

p
,

tx′(t)

x(t)
∼ p − 1

p
+

2

p log t
as t → ∞.

Hence, from (2) h is the principal solution of (16) and

Gh(t) = ((p − 1)/p)p−1 .

By Theorem 2 we obtain Q = ∞ and N = ∞, i.e., Q[α] = ∞ for every α ∈ [2, q]. Clearly,
this result can be also verified by a direct computation.

Now let γ < γp. In this case, again from [9, Section 1.4.2], the function

F (v) = |v|p − Φ(v) + γ/(p − 1)

has two real roots, namely λ1, λ2 with λ1 < (p − 1)/p < λ2. Moreover, h(t) = tλ1 is the
principal solution of (16) and any linearly independent solution x behaves asymptotically
as tλ2 (again up to a multiplicative factor). We have

lim
t→∞

Gh(t) = 0,

thus, by Theorem 2, we obtain Q = ∞ and N = ∞, i.e., Q[α] = ∞ for every α ∈ [2, q]. The
same conclusion follows by a direct computation observing that λ1q < 1.

The following example presents a typical equation for which limt→∞ Gh(t) = ∞ and
N < ∞ for every solution.

Example 4. Consider the half-linear Riemann-Weber differential equation

(17)
(
Φ(x′)

)
′

+

[
γp

tp
+

µp

tp log2 t

]
Φ(x) = 0,

where

γp =

(
p − 1

p

)p

, µp =
1

2

(
p − 1

p

)p−1

.

By [10, Corollary 1], equation (17) has a solution satisfying

h(t) = t
p−1

p log
1

p t
(
1 + o(log−1 t)

)
as t → ∞,
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and every linearly independent solution x satisfies

x(t) ∼ Ct
p−1

p log
1

p t log
2

p (log t), C ∈ R, as t → ∞.

Moreover, by [10, Theorem 4] with

δ(t) =
1

4 log2 t
, zh(t) =

√
t, zx(t) =

√
t log t,

i.e. (in notation of [10])

ξh(t) =
z′h(t)

zh(t)
=

1

2t
, ξx =

z′x(t)

zx(t)
=

1

2t

(
1 +

2

log t

)
,

we have as t → ∞
th′(t)

h(t)
∼ p − 1

p
+

1

p log t
,

tx′(t)

x(t)
∼ p − 1

p
+

1

p log t
+

2

p log(log t)
.

Hence, from (2) h is the principal solution of (17). Using the fact that

Gh(t) = hp(t)

(
h′(t)

h(t)

)p−1

,

we have Gh(t) ∼ log t → ∞ as t → ∞. From here and Lemma 1 we get Q = ∞. Moreover,

N =

∫
∞ 1

hq(t)
dt ∼

∫
∞ 1

(tp−1 log t)1/(p−1)
dt =

∫
∞ dt

t logq−1 t
,

and so, because p < 2, i.e. q > 2, we have N < ∞.

Summarizing, the integral characterization Q of the principal solution of (1) remains an
open problem when all solutions h of (1) satisfy lim Gh(t) = ∞. By Theorem 2-(ii), this
means that all solutions are unbounded and (11) does not hold. In view of Example 2, we
conjecture:

Conjecture. Assume (H1) and

(18)

∫
∞ 1

rq−1(t)

(∫
∞

t

c(s) ds
)q−1

dt = ∞.

Then the implication (4) holds.

4. An application

Here, as an application of the above result, we discuss the opposite case to (H1), namely
the case

(H2) c(t) > 0 for large t, Jr < ∞, Jc = ∞.
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Then Theorem A-(iii) is not applicable, but this case can be treated in a similar way by
means of the so-called reciprocity principle, see [2, Section 2] or [6, Section 3]. Consider the
so called reciprocal equation

(19) (c1−q(t)Φ∗(y′))′ + r1−q(t)Φ∗(y) = 0, Φ∗(y) := |y|q−1 sgn y,

which is obtained from (1), by interchanging the functions r, c with c1−q, r1−q, respectively,
and replacing the index p with its conjugate q. Observe that in (19) the role of the integral
Jr is played by Jc and vice-versa. Moreover, for any solution y of (19), the quasi-derivative
y[1] = c1−q(t)Φ∗(y′) is solution of (1) and vice-versa, for any solution x of (1), the quasi-
derivative x[1] is a solution of (19). Using the property that h is the principal solution of

(1) if and only if h̃ = h[1] is the principal solution of (19), see, e.g., [2, Proposition 1], the
above results can be easily formulated also when the case (H2) occurs.

Let y be a solution of (19). Then it is easy to verify that the integral characterizations
Q, N, Q[α] read for (19) as follows.

Q̃ =

∫
∞ dt

c1−q(t)y2(t)|y′(t)|q−2
,

Ñ =

∫
∞ c(t)

yp(t)
dt,

Q̃[α] =

∫
∞ dt

c(1−q)(α−1)(t)yα(t)|y′(t)|(q−1)(α−p)
,

respectively. Since, as already claimed, for any solution y of (19), the function y[1] is solution

of (1), a standard calculation yields that the integrals Q̃, Ñ , Q̃[α] can be written as

R =

∫
∞ c(t)Φ(h(t))

h(t)(h[1](t))2
dt,

P =

∫
∞ c(t)

(h[1](t))p
dt,

R[α] =

∫
∞ dt

c(1−q)(α−1)(t)yα(t)|y′(t)|(q−1)(α−p)
,

respectively, where h is a solution of (1).
Thus, the reciprocity principle leads to other possible integral characterizations of prin-

cipal solutions of (1), namely the integrals R, P, R[α]. Similarly to the previous situation,
roughly speaking the integral R[α] is a bridge between R and P, because

R[2] = R and R[p] = P.

Applying Theorem A-(iii) to the reciprocal equation (19) we get the following result.

Corollary 2. Let (1) be nonoscillatory, 1 < p < 2, and (H2) hold. Then h is the principal

solution of (1) if and only if R = ∞.
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Moreover, when the case (H2) holds, any solution x of (1) satisfies x(t)x[1] < 0 for large
t, see, e.g., [4, Proposition 2]. Hence the function Gx is negative for large t. Since y = x[1]

is solution of (19) and

(20) x(t)x[1] = −y(t)y[1](t),

in studying the integral characterization of principal solutions, the role of the function G
remains almost the same as the one illustrated in Section 2 for the case Jr = ∞, Jc < ∞.
More precisely, the following holds.

Lemma 4. Let (1) be nonoscillatory and (H2) hold. If x is a nonprincipal solution of (1),
then

lim inf
t→∞

Gx(t) = −∞.

Proof. The assertion follows from (20) and Lemma 1. �

When p > 2 and the case (H2) occurs, the following extension of Theorem 2 holds.

Theorem 3. Assume p > 2 and (H2). Let (1) be nonoscillatory and h be its solution.

(i) If h[1] is unbounded and

lim inf
t→∞

Gh(t) > −∞,

then h is the principal solution and R[α] = ∞ for every α ∈ [2, p]; in particular

R = ∞ and P = ∞.

(ii) If h[1] is bounded, then h is the principal solution and P = ∞. Moreover, limt→∞ Gh(t) =
0 and

(21)

∫
∞

c(t)
(∫

∞

t

r1−q(s) ds
)p−1

dt < ∞.

(iii) If h[1] is bounded and, in addition,
∫

∞

r1−q(t)
(∫ t

c(s)ds
)q−1

dt = ∞,

then R[α] = ∞ for every α ∈ [2, p]; in particular R = ∞.

Proof. Consider the reciprocal equation (19). Since p > 2, we have 1 < q < 2. Hence, the
assertion follows by applying Theorem 2 to (19) and using [2, Proposition 1], with minor
changes. The details are left to the reader. �

Remark 3. The integral characterization R has been already considered in [4]. Hence
Theorem 3 complements [4, Theorem 3-i2),Theorem 4]. As follows from the proof of The-
orem 3 in [4], if Jr = ∞, then Q ≤ R for any solution of (1). This inequality completes
(9).
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Remark 4. Theorem 3 assumes boundedness of quasi-derivatives of solutions of (1).
When (H2) holds, a necessary and sufficient condition on this topic is well-known, see, e.g.
[6, Theorem 4-(i2)], and reads as follows: Assume (H2) and (1) nonoscillatory. Then (1)
has solutions with bounded quasi-derivative if and only if (21) holds.

Similarly to Corollary 1, the following result gives another improvement of Theorem B.

Corollary 3. Assume (H2), p > 2 and (21). Then a solution h of (1) is the principal

solution if and only if R[α] = ∞ for some α ∈ [2, p].

Proof. Since (21) holds, equation (1) has nonoscillatory solutions with bounded quasideriva-
tive, see e.g., [4, Theorem A] or [15, Theorem 4.1]. Now the assertion follows applying The-
orem 2-(ii) and Theorem B to the reciprocal equation (19) and using again [2, Proposition
1], with minor changes. �

Analogously, if (H2) holds, it remains an open problem the statement “If Q = ∞, then h
is the principal solution” when all solutions h of (1) tend to zero and |Gh(t)| is unbounded.
Thus Conjecture 1 reads as

Conjecture 1’. Assume (H2) and

(22)

∫
∞

c(t)
(∫

∞

t

r1−q(s) ds
)p−1

dt = ∞.

If Q = ∞, then h is the principal solution of (1).

We conclude this paper by summarizing integral characterizations P , R in terms of the
function Gh.

Corollary 4. Let (1) be nonoscillatory and either Jr = ∞ or Jc = ∞. In addition, if (18)
holds, suppose p ≥ 2 and if (22) holds, suppose 1 < p ≤ 2. Then a solution h of (1) is the

principal solution if and only if
∫

∞ r(t)(h′(t))p + c(t)(h(t))p

G2
h(t)

dt = ∞.

Proof. By [4, Corollary 2], a solution h of (1) is principal if and only if P + R = ∞. The
integral R can be written using the function Gh as

(23) R =

∫
∞ c(t)

r(t)

Φ(h(t)

Φ(h′(t))

1

Gh(t)
dt,

so from here and Lemma 2, we get the conclusion. �

Note added in proof. After this paper was written, we pointed out that the integral char-
acterization Q[α] introduced in [11] is discussed also in [12]. When c is positive for large t,
then Theorem 2 extends [12, Corollary 1] where additional assumptions on h are posed.
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The interesting case is when limt→∞ G(t) = ∞ for all solutions of (1), as Riemann-Weber
equation illustrates, but this case is not treated in [12].
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[5] M. Cecchi, Z. Došlá, M. Marini, I. Vrkoč: Integral conditions for nonoscillation of second order

nonlinear differential equations, Nonlinear Anal. 64 (2006), 1278-1289.
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